Цифровые технологии помогут в ранней диагностике сердечно-со
Вход Регистрация
Меню
Горец года 2019 Время голосовать
участвовать
Вход Регистрация


Увеличить/уменьшить шрифт
+A -a

Ставрополье

Цифровые технологии помогут в ранней диагностике сердечно-сосудистых заболеваний

7 октября 2021
5794
0
-

Цифровые технологии помогут в ранней диагностике сердечно-сосудистых заболеваний

Математики Северо-Кавказского федерального университета (СКФУ) разработали эффективную систему раннего распознавания сердечно-сосудистых заболеваний по сигналам ЭКГ. Предложенный подход показал более высокую точность, чем его аналоги. Новый метод позволяет повысить качество ранней диагностики проблем с сердцем, что очень важно для предупреждения опасных заболеваний.

 

Как отметили ученые, сегодня сердечно-сосудистые заболевания – это основная причина смерти в развитых странах, и число пациентов, наблюдающихся у кардиолога, с каждым днем растет. Для выявления проблем с сердцем используется электрокардиограмма (ЭКГ), но врачи в среднем оценивают полученные данные с точностью от 65 до 70 процентов. В остальных случаях информация истолковывается неверно, что негативно сказывается на здоровье пациентов. Математики СКФУ предложили оригинальный подход, повышающий точность определения мерцательной аритмии (фибрилляции предсердий), повышающей риск ишемического инсульта. 

 

 — Мы разработали новую архитектуру с передовой рекуррентной структурой нейронной сети, – пояснил руководитель проекта, заведующий кафедрой математического моделирования СКФУ и отделом модулярных вычислений и искусственного интеллекта регионального научно-образовательного математического центра «Северо-Кавказский центр математических исследований» при вузе Павел Ляхов.  Для более точной интерпретации сигналов мы используем предварительную цифровую обработку данных с помощью цифровых фильтров, спектрального анализа и некоторых других методов. Благодаря этому нам удалось существенно снизить шумы различной природы, искажающие сигнал электрокардиограммы. В результате мы смогли повысить точность интерпретации данных до 87,5 процентов. У лучших зарубежных аналогов этот показатель достигает 79-83 процентов.

 

Для обучения нейронной сети использовалась открытая база сигналов кардиограмм «PhysioNet Computing in Cardiology Challenge» (CinC Challenge). Во время первой симуляции сеть изучила данные 976 кардиограмм, а во время второй  ей предложили 5754 кардиограммы.

 

 — Наш подход не требует каких-то специализированных технических средств, - отметила аспирантка, научный сотрудник кафедры математического моделирования СКФУ Ульяна Ляхова. – Предложенное нами решение может быть реализовано в виде специальной программы, которая на входе будет получать сигнал кардиограммы, а на выходе выдавать свой вердикт, нуждается ли человек в лечении или профилактике сердечно-сосудистых заболеваний. В перспективе мы хотим обобщить наш подход и применить его для обработки других биомедицинских сигналов, полученных с тела человека. Большой интерес для нас представляет и обработка мозговых сигналов по электроэнцефалограмме. Подобные исследования сейчас очень актуальны для разработки интерфейса «мозг-компьютер», позволяющего управлять компьютером с помощью своих мыслей без мышек и клавиатуры.

 

Исследование проводилось при финансовой поддержке Российского фонда фундаментальных исследований и Совета по грантам при Президенте РФ.  

 

Результаты исследования опубликованы в специальном выпуске швейцарского научного журнала «Applied Sciences» 



Поделиться:
Комментариев: 0


Читайте также:






X
Авторизация Регистрация Востановление доступа